hr. The solvent was evapd, and the solid residue stirred with 10% NaOH soln and extd with CHCl₃. Following the usual work-up, a dark brown oil (7.2 g) was obtained. A sample of this oil was shown by gc analysis## to be a mixt of 4a and 5a (9:1 ratio). The main portion was chromatographed on neutral alumina (Woelm act. I) packed in C_6H_6 . Elution with Et₂O gave an oil which was converted to 0.35 g of the fumarate salt of 5b. Similarly, elution with Me₂CO-Et₂O and Me₂CO gave 3.5 g of 4a fumarate.

B. Basic Condition. (a) A soln of 0.058 mole of NaH (dispersed in oil) in 80 ml of anhyd DMSO under N_2 was stirred for 30 min. After 1.5 hr following the introduction 8.0 g (0.046 mole) of 3a, a soln of 9.15 g (0.064 mole) of MeI in 20 ml of DMSO was slowly added with external cooling keeping the temp below 20°. After standing at 25° for 18 hr, the mixt was poured into crushed ice and extd with CHCl₃. The CHCl₃ soln was washed with H_2O to remove the DMSO and evapt to dryness leaving an oil. A sample was shown by gc analysis## to be a mixt of 4a (24%), 5a (56%), 6 (17%, retention time, 10.8 min) and an unidentified material (3%, retention time, 14.8 min). The oily mixt was chromatographed as described in the previous expt. From the C_6H_6 fractions, there was isolated 0.2 g of 6. Compounds 4a (3.6 g) and 5a (0.8 g) were isolated as fumarates identical with that previously obtained.

(b) A suspension of 2.0 g (0.0116 mole) of 3a and 0.5 g (0.0127 mole) of NaNH₂ in 60 ml of liq NH₃ was stirred for 30 min until dissolution occurred. A soln of 8.2 g (0.057 mole) of MeI in 20 ml of anhyd THF was added dropwise. After 5 hr, external cooling was discontinued, and the liq NH₃ evapd. The THF layer was decanted and the residue washed with H₂O, filtered, and dried to give 2.5 g of a solid. Recrystn from EtOH gave 0.6 g of 5a (HI), mp 274–283° dec; nmr (CDCl₃-KOD) identical with that of 5a (base) previously prepd. Anal. (C₁₁H₁₃N₃O·HI) C, H, N. The mother liquor was concd to give a ppt (mp 230–234°) which was suspended in MeOH and basified with 10% NaOH soln. On evapn of the MeOH and addn of H₂O to the residue, an oily material was pptd. Extn with Et₂O and evapn of Et₂O gave an oil, nmr spectrum (CDCl₃) identical with that of 4a (base) previously prepd; mp of the fumarate also identical with that of 4a fumarate.

10-Methyl-2,3,5,10-tetrahydroimidazo [2,1-b] quinazoline-5-thione (4c). To a stirred soln of 1.0 g (0.005 mole) of 4b in 40 ml

##Gas chromatography was performed on a Hewlett-Packard 5750 instrument with a 8 ft \times 0.125 in. column, 3% OV-17 on 80–100 chromosorb W (HP), He 30 ml/min; initial column temp 150°, programmed 5°/min. Peaks were integrated automatically by an Infotronics CRS-100 instrument. Found retention time (min): 4a, 8.3; 5a, 10.1.

of pyridine was added 4.2 g (0.0189 mole) of P_2S_5 and the mixt was refluxed for 5 hr. After evapg the solvent, the residue was triturated with hot H_2O to give 4c (0.8 g after recrystn).

1-Acetyl-1,2,3,5-tetrahydroimidazo[2,1-b]quinazoline (5b). A soln of 0.9 g (0.0052 mole) of 3a in 25 ml of Ac₂O was heated on a steam bath for 15 min. It was concd, and the cryst ppt was filtered giving 0.93 g of 5b.

1-Acetyl-1,2,3,5-tetrahydroimidazo[2,1-b]quinazolin-5-one (5c). A soln of 1.5 g (0.008 mole) of 2a in 25 ml of Ac₂O was warmed on a steam bath for 30 min. On cooling, the cryst product was filtered and washed with Et₂O giving 1.65 g of 5c.

References

- (1) B. Loev, T. Jen, and R. McLean, Experientia, 27, 875 (1971)
- (2) (a) W. Hoefte and W. Kobinger, Arzneim. Forsch., 16, 1038 (1966); (b) H. Schmitt, Mme H. Schmitt, J. R. Boissier, J. F. Gindicelli, and J. Fichelle, Eur. J. Pharmacol., 2, 340 (1968).
- (3) T. Jen, et al; manuscript in preparation.
- (4) (a) R. J. Groat and M. N. Partridge, J. Chem. Soc., 3551 (1960); (b) E. Ziegler, W. Steiger, and Th. Kappe, Monatsh. Chem., 99, 1499 (1968); (c) G. Doleschall and K. Lempert, Acta. Chem. Acad. Sci. Hung., 45, 357 (1965).
- (5) R. H. Clark and E. C. Wagner, J. Org. Chem., 9, 55 (1944).
- (6) R. Adams and H. R. Snyder, J. Amer. Chem. Soc., 60, 1411 (1938); D. G. O'Sullivan and P. W. Sadler, J. Chem. Soc., 2916 (1957).
- (7) A. E. Senear, H. Sargent, J. F. Mead, and J. B. Koepfi, J. Amer. Chem. Soc., 68, 2695 (1946); P. W. Sadler, J. Org. Chem., 21, 169 (1956).
- (8) R. J. North and A. R. Day, J. Heterocycl. Chem., 6, 655 (1969).
- (9) G. Doleschall, L. Lang, and K. Lampert, Acta. Chem. Acad. Sci. Hung., 47, 405 (1966).
- (10) D. Greco, F. Olmsted, M. G. N. Masson, and A. C. Corcoran, J. Lab. Clin. Med., 41, 729 (1953); D. M. Green, F. J. Saunders, N. Wahlgren, and R. L. Craig, Amer. J. Physiol., 170, 94 (1952).
- (11) K. S. Grimson, Arch. Surg., 43, 284 (1941).
- (12) J. Parra and H. Vidrio, Archs. Int. Pharmacodyn. Ther., 181, 353 (1969).
- (13) J. W. Constantine and W. K. McShane, Eur. Pharmacol., 4, 109 (1968).
- (14) J. E. Baer and R. G. Lockwood, J. Amer. Chem. Soc., 76, 1162 (1954).

Synthetic Antibacterials. 4.1 Nitrofurylvinylpyrido[2,3-d]pyrimidine Derivatives

Sadao Nishigaki,* Kazuko Ogiwara, Shinobu Fukazawa, Misuzu Ichiba, Noriko Mizushima, and Fumio Yoneda Pharmaceutical Institute, School of Medicine, Keio University, Shinanomachi, Shinjuku-ku, Tokyo, Japan. Received August 2, 1971

The synthesis of several 5-hydroxy-2-[2-(5-nitro-2-furyl)vinyl]pyrido[2,3-d]pyrimidine-6-carboxylic acid derivatives and related compounds are discussed. Some members of the series display broad in vitro antibacterial activities against Gram-positive and Gram-negative organisms.

The attachment of a heterocyclic ring to the 2 position of the 5-nitrofuran ring frequently gives antimicrobial agents² and the introduction of a conjugated double bond between these rings often results in enhancing the *in vitro* activities.^{3,4} In view of these facts we have synthesized several nitrofurylvinyl heterocycles^{1,5,6} in an effort to obtain useful antibacterial agents and found that certain nitrofurylvinyl-1,8-naphthyridines (I)⁶ possess outstanding activity against *Pseudomonas aeruginosa* as well as a variety of organisms. This paper is concerned with the synthesis and biological evaluation of 5-hydroxy-2-[2-(5-nitro-2-furyl)vinyl] pyrido-[2,3-d] pyrimidine-6-carboxylic acid derivatives (II), which correspond to the analogous system of I mentioned above.

Chemistry. Treatment of ethyl 4-substituted-2-methyl-5-hydroxypyrido [2,3-d] pyrimidine-6-carboxylates (III)⁷ with

5-nitrofurfural led to the formation of the respective nitrofurylvinylpyrido [2,3-d] pyrimidines (1-6) when the substituent in the 4 position was H, OH, OR, or PhO. The reaction was generally performed by heating the reactants in AcOH or Ac₂O. The free carboxylic acids of III do not condense with 5-nitrofurfural. Catalysts, such as concd H₂SO₄, which saponify III are therefore unsuited for the condensation reaction. Nitrofurylvinylpyrido [2,3-d] pyrimidines bearing amino substituents in the 4 position were prepared by heating the corresponding 4-alkoxy derivatives with amines such as MeNH₂, pyrrolidine, piperidine, or morpholine in DMF. This amination offers a convenient synthetic method of 4-aminonitrofurylvinylpyrido [2,3-d] pyrimidines (7-10), which could not be obtained by direct condensation from the corresponding 4-amino-5-hydroxy-2-methylН

Н

Н

Н

Н

C, H, N

C, H, N

C, H, N

C, H

C, H

 $C_{14}H_8N_4O_2$

 $C_{18}H_{21}N_{5}O_{6}$

					K ₃			
No.	R_i	R_2	R_3	Yield, %	Mp,°C	Recrystn solvent	Formula	Analysis
1	H	C ₂ H ₅	Н	52.6 ^a	>320	AcOH	C ₁₆ H ₁₂ N ₄ O ₆	C, H, N
2	OCH ₃	C_2H_5	Н	73.3^{a}	282-286	AcOH	$C_{17}^{13}H_{14}^{12}N_{4}^{7}O_{7}^{3}$	C, H
3	OC, H,	C_2H_5	Н	74.0^{a}	254-256	AcOH	$C_{18}H_{16}N_{4}O_{7}$	C, H, N
4	OC_6H_5	C_2H_5	Н	47.5 ^a	274-278	AcOH	$C_{22}H_{16}N_4O_7$	C, H, N
5	OH	C_2H_5	Н	76.0^{a}	>320	DMF	$C_{16}H_{12}N_{4}O_{7}$	C, H, N
6	NHNHCHO	C_2H_5	Н	29.4ª	>320	EtOH	$C_{17}H_{14}N_{6}O_{7}$	C. H, N
7	NHCH ₃	C_2H_5	Н	84.4 <i>b</i>	>300	DMF	$C_{17}H_{15}N_{5}O_{6}$	C, H, N
8	Pyrrolidyl	C_2H_5	Н	50.0^{b}	241-242	EtOAc	$C_{20}H_{19}N_{5}O_{6}$	C, H
9	Piperidyl	C_2H_5	Н	54.0^{b}	285	DMF	$C_{21}H_{21}N_{5}O_{6}$	C, H, N
10	Morpholinyl	C_2H_5	Н	54.5 ^b	278-280	DMF	$C_{20}H_{19}N_{5}O_{7}$	C, H, N
11	Н .	Η	Н	88.0^{c}	>320	DMF	$C_{14}H_8N_4O_6$	C, H, N
				00.00		D1/00	~* [*] ******	~

 90.0^{c}

 30.0^{d}

 42.1^{d}

 68.5^{d}

59.2d

>320

>340

>320

275

298-302

^aPrepared by the direct condensation of 2-methylpyrido[2,3-d] pyrimidines with 5-nitrofurfural. ^bPrepared by the amination of 4-ethoxy-2-nitrofurylvinylpyrido [2,3-d] pyrimidine (3) with appropriate amines. CPrepared by the hydrolysis of the corresponding 6-carboxylates. dPrepared by the alkylation of the corresponding 6-carboxylic acids.

Chart I

12

13

14

15

16

Н

OH

OH

Η

NO₂ O CH=CH N N COOH

I

$$R_1$$
 O COOR₂
 R_3

II

 R_1 OH
 R_3
 R_3

pyrido [2,3-d] pyrimidine-6-carboxylates and 5-nitrofurfural. Ethyl 5-hydroxy-2-[2-(5-nitro-2-furyl)vinyl]pyrido[2,3-d]pyrimidine-6-carboxylate (1) was subjected to acid hydrolysis by refluxing in AcOH-concd HCl (9:1) to yield the corresponding 6-carboxylic acid (11). Other ethyl nitrofurylvinylpyrido [2,3-d] pyrimidine-6-carboxylates were similarly hydrolyzed, whereby all the 4 substituents were also hydrolyzed to give the same product, 4,5-dihydroxy-2-[2-(5-nitro-2-furyl)vinyl]pyrido[2,3-d]pyrimidine-6-carboxylic acid (12). The latter compound could not be prepared by the condensation of 4,5-dihydroxy-2-methylpyrido [2,3-d]pyrimidine-6-carboxylic acid with 5-nitrofurfural in a mixture of Ac₂O and AcOH or Ac₂O and CF₃COOH. Compounds 11 and 12 were refluxed with Et₂SO₄ and K₂CO₃ in DMF to give the corresponding 8-Et derivatives (13, 14). Compound 11 was converted into the 8-Me derivative (15) with MeI and into the 8-diethylaminoethyl derivative (16)

III, $R_1 = H$, OH, OAlk, OPh IV, $R_1 = NHNH_2$

Table II. 4-[(5-Nitro-2-furyl)hydrazinomethine]pyrido[2,3-d]pyrimidines

DMSO

CHCl,

H₂O

DMF

EtOH

$$\begin{array}{c} \text{COOR} \\ \text{HO} & \text{N} \\ \text{NO}_2 & \text{CH=NNH} & \text{N} \\ \text{CH} \end{array}$$

No.	R	Yield, %	Mp, °C	Recrystn solvent	Formula ^a
17	Н	68.4	>320	DMF	C ₁₄ H ₁₀ N ₆ O ₆
18	C ₂ H ₅	30.0	255 dec	Me ₂ CO	$C_{16}H_{14}N_{6}O_{6}$
a_A	nal. C, H	I, N.			

Table III. 2-Styrylpyrido [2,3-d] pyrimidines

$$\begin{array}{c} OC_2H_s OH \\ N \\ CH=CH \\ N \\ N \end{array}$$

No.	R	Yield, %	Mp, °C	Recrystn solvent	Formula a
19	Cl	34.9	255	DMF	C ₂₀ H ₁₈ ClN ₃ O ₄
20	NO_2	50.8	265	DMF	$C_{20}H_{18}N_4O_6$

^aAnal. C, H, N.

with diethylaminoethyl chloride in the presence of K₂CO₃ in EtOH (see Table I).

When 4-hydrazino-5-hydroxypyrido [2,3-d] pyrimidine-6carboxylic acid derivatives (IV)⁷ were treated with 5-nitrofurfural in Ac₂O-AcOH, the 4-[(5-nitro-2-furyl)hydrazinomethine pyrido [2,3-d] pyrimidine derivatives (17,18) were formed (Table II). For comparison of their activities with those of the respective nitrofurylyinyl compounds, p-chloroand p-nitrostyryl derivatives (19, 20) were prepared by the condensation of ethyl 4-ethoxy-2-methylpyrido [2,3-d]pyrimidine-6-carboxylate with p-chloro- and p-nitrobenzaldehyde (Table III).

Table IV. In Vitro Antibacterial Activity

	Min inhib concn, μg/ml ^a															
No.	Escher- ichia coli Kaufmann O-1	Klebsi- ella pneu- moniae ATCC 10031	P. vul- garis	Ps. aeru- ginosa	Sal- monella typhi H 901 w	Staphyl- ococcus enter- itidis	S. flex- neri 2a 1675	S. sonnei II 37148	Bacillus mega- therium 10778	B. sub- tilis ATCC 6633	Micro- coccus flavus ATCC 10240	Staph. aureus FDA 209 P	Staph. aureus (Shim- anishi)	Staph. aureus (Ōnuma)	Myco- bacter- ium 607	M. phlei
1	0.19	1.56	>25	>25	1.56	0.78	0.39	0.39	0.39	0.19	1.56	0.39	0.19	0.19	>25	>25
2	3.13	6.25	>6.25	>6.25	6.25	3.13	1.56	1.56		0.78	1.56	0.19	0.04	0.04	6.25	6.25
3	>100	100	>100	>100	100		100	100		0.39	1.56	0.78	0.39	0.39	100	100
4	>25	>25	>25	>25	25	25	25	25		0.78	25	0.78	0.19	0.39	25	25
5	>50	>50	>50	>50	>50	>50	50	50	25	>50	>50	>50	>50	>50	>50	50
6	>25	>25	>25	>25	>25	25	25	>25	>25	> 25	25	12.5	25	25	>25	>25
7	6.25	6.25	>6.25	6.25	6.25	6.25	6.25	6.25	0.09	0.09	0.39	0.19	0.04	0.04	3.13	3.13
8	>100	12.5	>100	>100	100		100	100		1.56	3.13	0.78	0.39	0.39	12.5	12.5
9	25	25	>25	>25	25	12.5	25	25	0.39	0.39	0.13	0.39	0.09	0.09	12.5	12.5
10	25	12.5	>25	>25	25	6.25	25	25	3.13	3.13	3.13	3.13	3.13	3.13	>25	>25
11	25	6.25	>25	>25	25	3.13	6.25	25	3.13	3.13	3.13	3.13	3.13	3.13	>25	>25
12	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50
13	3.13	1.56	12.5	12.5	6.25 >3.13	3.13	3.13	3.13	0.09	0.09	0.39	0.39	0.09	0.09	12.5	12.5
14	>3.13 6.25	>3.13	>3.13 25	>3.13	6.25	>3.13 3.13	>3.13 3.13	>3.13 6.25	>3.13 1.56	>3.13 0.78	>3.13	>3.13	>3.13 1.56	>3.13 0.78	3.13 12.5	3.13
15 16	12.5	25 25	25 25	25 25	12.5	3.13	6.25	12.5	3.13	1.56	1.56 3.13	1.56 3.13	1.56	1.56	12.5	6.25 6.25
17	>25	>25	>25	>25	>25	>25	>25	>25	>25	>25	>25	>25	>25	>25	>25	>25
18	>25	25	>25	>25	25	12.5	25	25	12.5	6.25	25	3.13	6.25	3.13	25	25
19	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50	>50
20	>25	>25	>25	>25	>25	>25	>25	>25	6.25	6.25	6.25	12.5	3.13	3.13	50	50
\bar{b}	6.25	6.25	>50	>50	12.5	6.25	3.13	12.5	3.13	3.13	>50	12.5	12.5	12.5	>50	>50
c	6.25	12.5	>50	>50	12.5	6.25	3.13	6.25	6.25	6.25	>25	12.5	12.5	12.5	>50	>50

^aMinimum inhibitory concentration is the lowest concentration of the compound that prevents visible growth after 48 hr of incubation at 37°. ^bNitrofurazone. ^cNitrofurazone.

Screening Results. The compounds were screened in vitro against a wide variety of bacteria (Table IV). Most of these compounds possess activity against both Gramnegative and Gram-positive organisms. Especially 1, 2, 7, 13, 15, and 16 possess high antibacterial activity; the activity of 7, 13, 15, and 16 against Pseudomonas aeruginosa and Proteus vulgaris is noteworthy. It is interesting to note that the parent 5-hydroxy-2-[2-(5-nitrofuryl)vinyl]pyrido-[2,3-d]pyrimidine-6-carboxylic acid (11) is less potent than the corresponding ester (1) or the 8-alkyl derivatives (13, 15, 16). The substitution of the nitrofurylvinyl group with the styryl group decreases the activity.

Experimental Section

Ethyl 5-Hydroxy-2-[2-(5-nitro-2-furyl)vinyl]pyrido [2,3-d]-pyrimidine-6-carboxylates (1-6). An ethyl 5-hydroxy-2-methyl-pyrido [2,3-d] pyrimidine-6-carboxylate and an equimolar amount of 5-nitrofurfural were refluxed in Ac₂O-AcOH (1:1) for several hours. The reaction mixt solubilized and then the product was pptd. After cooling, the separated crystals were collected by filtration, washed with AcOH and then Et₂O, and recrystd from AcOH or DMF to give a yellow powder.

Ethyl 5-Hydroxy-2-[2-(5-nitro-2-furyl)vinyl]-4-sec-aminopyrido-[2,3-d]pyrimidine-6-carboxylates (7-10). A mixt of ethyl 4-ethoxy-5-hydroxy-2-methylpyrido [2,3-d]pyrimidine-6-carboxylate and an equimolar amount of secondary amine (MeNH₂, pyrrolidine, piperidine, or morpholine) was heated in DMF at 120-130° for 10-90 min. After cooling, the product was removed by filtration and recrystd from a suitable solvent to give a yellow powder.

5-Hydroxy-2-[2-(5-nitro-2-furyl)vinyl]pyrido[2,3-d]pyrimidine-6-carboxylic Acid (11). Ethyl 5-hydroxy-2-[2-(5-nitro-2-furyl)-vinyl]pyrido[2,3-d]pyrimidine-6-carboxylate (1) (0.45 g, 0.0013 mole) was refluxed for 2 hr in a mixt of AcOH (9 ml) and concd HCl (1 ml). The ppt was collected from the cooled solution, washed with $\rm H_2O$, and recrystd from DMF to give yellow needles (0.37 g, 88%, mp >320°).

4,5-Dihydroxy-2-[2-(5-nitro-2-furyl)vinyl]pyrido[2,3-d]pyrimidine-6-carboxylic Acid (12). A. A mixt of ethyl 4,5-dihydroxy-2-[2-(5-nitro-2-furyl)vinyl]pyrido[2,3-d]pyrimidine-6-carboxylate (5) (0.40 g, 0.0011 mole), AcOH (27 ml), and concd HCl (3 ml) was refluxed for 1 hr. After cooling, the ppt was collected by filtration, washed with $\rm H_2O$, and recrystd from DMSO to give a yellow powder (0.35 g, 90%, mp >320°).

B. A mixt of ethyl 4-methoxy-5-hydroxy-2-[2-(5-nitro-2-furyl)-vinyl]pyrido[2,3-d]pyrimidine-6-carboxylate (2) (0.45 g, 0.0012 mole), AcOH (9 ml), and concd HCl (1 ml) was refluxed for 1 hr. The precipitated crystals were removed from the cooled solution and recrystd from DMSO to give a yellow powder (0.35 g, 85.4%).

C. To a mixt of AcOH (10 ml) and concd HCl (3.3 ml) was added ethyl 4-methylamino-5-hydroxy-2-[2-(5-nitro-2-furyl)vinyl]-pyrido[2,3-d]pyrimidine-6-carboxylate (7) (1 g, 0.0026 mole) and the mixt was refluxed for 90 min. The precipitate was collected by filtration and recrystallized from DMF to give a yellow powder (0.53 g, 61.8%).

5,8-Dihydro-8-ethyl-2-[2-(5-nitro-2-furyl)vinyl]-5-oxopyrido-[2,3-d]pyrimidine-6-carboxylic Acid (13). A mixt of 5-hydroxy-2[2-(5-nitro-2-furyl)vinyl]pyrido[2,3-d]pyrimidine-6-carboxylic acid (11) (0.2 g, 0.0006 mole), Et_2SO_4 (0.09 g, 0.0006 mole), and $K_2\mathrm{CO}_3$ (0.08 g) was heated in DMF (3 ml) at 130–150° for 2 hr. After cooling, the reaction mixt was diluted with Et_2O. The precipitated powder was collected and extracted with hot CH_3Cl. The extracts were evaporated and the residue was recrystd from CHCl_3 using charcoal to give yellow-brown needles (0.1 g, 30%, mp 298–302°).

5,8-Dihydro-8-ethyl-4-hydroxy-2-[2-(5-nitro-2-furyl)vinyl]-5-oxopyrido[2,3-d]pyrimidine-6-carboxylic Acid (14). A mixt of 4,5-dihydroxy-2-[2-(5-nitro-2-furyl)vinyl]pyrido[2,3-d]pyrimidine-6-carboxylic acid (12) (0.53 g, 0.0015 mole), Et₂SO₄ (0.26 g, 0.0014 mole) and $\rm K_2CO_3$ (0.5 g) was heated in DMF (10 ml) at 100° for 2 hr. After cooling, the product was removed by filtration and recrystd from H₂O to give yellow powder (0.24 g, 42.1%, mp >320°).

2-Methyl-5-hydroxy-4-[(5-nitro-2-furyl)hydrazinomethine]-pyrido[2,3-d]pyrimidine-6-carboxylic Acid (17). To a mixt of 4-hydrazino-5-hydroxy-2-methylpyrido[2,3-d]pyrimidine-6-carboxylic acid (0.45 g, 0.0016 mole), Ac₂O (9 ml), and AcOH (9 ml) was added 5-nitrofurfural (0.25 g, 0.018 mole) and the mixt was refluxed at 140° for 2.5 hr. After cooling the product was collected by filtration, washed with AcOH, and recrystd from EtOH to give a yellow powder (0.2 g, 29.4%, mp >320°).

Ethyl 2-Methyl-5-hydroxy-4-[(5-nitro-2-furyl)hydrazinomethine]-pyrido [2,3-d]pyrimidine-6-carboxylate (18). To a mixt of ethyl 4-hydrazino-5-hydroxy-2-methylpyrido [2,3-d]pyrimidine-6-carboxylate (0.5 g, 0.0019 mole), Ac_2O (10 ml), and AcOH (10 ml) was added 5-nitrofurfural (0.25 g, 0.0018 mole) and the mixt was refluxed at 130° for 2 hr. The reaction mixt was diluted with H_2O , and the precipitate was collected by filtration and recrystd from Me_2CO to give a yellow powder (0.22 g, 30%, mp 255° dec).

Ethyl 4-Ethoxy-5-hydroxy-2-(p-nitrostyryl)pyrido [2,3-d]pyrimidine-6-carboxylate (20). A mixt of ethyl 4-ethoxy-5-hydroxy-2-methylpyrido [2,3-d]pyrimidine-6-carboxylate (0.8 g, 0.0029 mole), p-nitrobenzaldehyde (0.88 g, 0.0058 mole), Ac₂O (5 ml), and AcOH (5 ml) was refluxed for 3 hr. Yellow crystals were removed from the reaction mixt, washed with AcOH, and recrystd from DMF to give pale yellow crystals (0.6 g, 50.8%, mp 265°).

Acknowledgment. The authors express their thanks to Professor H. Saikachi of Kyushu University for his encouragement throughout this study.

References

- S. Nishigaki, N. Mizushima, and F. Yoneda, J. Med. Chem., 14, 638 (1971) (paper 3).
- (2) K. Miura and H. K. Reckendorf, *Progr. Med. Chem.*, 5, 320 (1967)
- (3) T. Takahashi, H. Saikachi, S. Yoshina, and C. Mizuno, Yakugaku Zasshi, 69, 284 (1949); Chem. Abstr., 44, 5372 (1950).
- (4) T. Sasaki, Chem. Pharm. Bull., 2, 104 (1954).
- (5) S. Nishigaki, F. Yoneda, H. Matsumoto, and K. Morinaga, J. Med. Chem., 12, 39 (1969).
- (6) S. Nishigaki, F. Yoneda, K. Ogiwara, T. Naito, R. Dohmori, S. Kadoya, Y. Tanaka, and I. Takamura, Chem. Pharm. Bull., 17, 1827 (1969).
- (7) S. Nishigaki, K. Ogiwara, K. Senga, S. Fukazawa, K. Aida, Y. Machida, and F. Yoneda, ibid., 18, 1387 (1970).